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Optimization needs Iterative Algorithms. Why???? Let us recall the normal equation, and the solution
x∗ = (A>A)−1A>b. Generally, the computational complexity of (A>A)−1 ∈ Rn2

is O(n3). why??????

The iterative algorithm usually has the following general form in Algorithm 1.

Algorithm 1 General Form of Iterative Algorithm

1: Input: Something you need
2: Initialization: a starting point x0, and step index t = 0
3: while a stop condition false do
4:

xt+1 := Iterative Algorithm(xt),

and
t := t+ 1.

5: end while
6: Output: The sequence {xt}Tt=0.

Then we hope that lim
t→∞

xt = x∗.

Example 1 (Solving the Normal Equation)

Denote that Ã = A>A and b̃ = A>b, then normal equation becomes that Ãx = b̃. How to compute it
efficiently?

• Jacobi Iterative Algorithm: Let Ã = B + D, where D = diag(Ã) and B = Ã − D. Then the normal
equation is (D +B)x = b̃. Thus, Dx = −Bx + b̃. Finally,

x = −D−1Bx +D−1b̃. (1)

Based on Eq.(1), Jacobi iterative algorithm is designed via

xt+1 = −D−1Bxt +D−1b̃, (2)

and the scalar form is

xt+1,i =
b̃i −

∑n
j=1,j 6=i xt,j ãij

ãii
,

where we suppose that ãii 6= 0 for all i = 1, . . . , n.

Insights: If lim
t→∞

xt = x∗, then lim
t→∞

xt+1 = −D−1B lim
t→∞

xt +D−1b̃. Thus, x∗ = −D−1Bx∗ +D−1b̃.

This indicates x∗ satisfies the normal equation.

• Gauss-Seidel Algorithm: Let Ã = L+U +D, where D = diag(Ã), L is the Lower triangular matrix of
Ã and U is the upper triangular matrix of Ã. Then the normal equation is (D + L+ U)x = b̃. Thus,
Dx = −Lx− Ux + b̃. Finally,

x = −D−1Lx−D−1Ux +D−1b̃. (3)

Based on Eq.(3), Gauss-seidel iterative algorithm is designed via

xt+1 = −D−1Lxt+1 −D−1Uxt +D−1b̃, (4)
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and the scalar form is

xt+1,i =
b̃i −

∑i−1
j=1 ãijxt+1,j −

∑n
j=i+1 ãijxt,j

ãii
,

where we suppose that ãii 6= 0 for all i = 1, . . . , n.

Insights: If lim
t→∞

xt = x∗, then lim
t→∞

xt+1 = −D−1L lim
t→∞

xt+1 − D−1U lim
t→∞

xt + D−1b̃. Thus, x∗ =

−D−1Lx∗ −D−1Ux∗ +D−1b̃. This indicates x∗ satisfies the normal equation.

The procedure of obtaining the iterative solution can be seen as an algorithm for solving the
linear least squares problem.

Remark 1 Algorithms in optimization can be commonly summarized as three types, but it’s not limited to
these.

• Closed Form Solution.

• Iterative Algorithm, see Algorithm 1.

• Heuristic Algorithms (e.g., genetic algorithm), which will not be covered by the course.

1 Related Theory in Optimization

“Nothing is more practical than a good theory.”– by V. Vapnik [Vapnik, 1998].

What kind of theory we have to learn in Optimization?

• Theory can support you to construct models. You have see them in many examples (e.g., MLE).

• Theory can help you develop algorithms. For example, convex analysis, KTT conditions, duality theory,
optimally conditions, and among others.

• Theory can implicitly show the convergence property of the optimization algorithms. Convergence
theory is to show that under what conditions the sequences {xt}∞t=1 and {f(xt)}∞t=1 satisfy

lim
t→∞

xt = x∗ and lim
t→∞

f(xt) = f∗ = f(x∗).

Convergence Rate:

• linear convergence:
‖xt+1 − x∗‖
‖xt − x∗‖

≤ a,

where a ∈ (0, 1).

• Super-linear convergence:

lim
t→∞

‖xt+1 − x∗‖
‖xt − x∗‖

= 0.

• sub-linear convergence:

lim
t→∞

‖xt+1 − x∗‖
‖xt − x∗‖

= 1.
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• Others theoretical bounds:

‖xt − x∗‖ ≤ O(t, Q),

and

‖f(xt)− f∗‖ ≤ O(t, Q),

where Q includes some constants related to the original optimization problem.

We justify the convergence theory of Jacobi and Gauss-Seidel algorithms for demonstrating an concrete
example.

Theorem 1 Suppose that we have the linear equation with form x = Bx + C, then we can develop an
iterative algorithm

xt+1 = Bxt + C. (5)

For any initial point x0, the generated sequence {xt}∞t=0 converges at x∗ if and only if ρ(B) := ‖B‖2 =
σmax(B) < 1, where σmax(B) is the biggest singular value of B and ρ(B) is so-called spectral radius of B.

Proof 1 Necessary: If lim
t→∞

xt = x∗, then according to the iterative procedure (5), we have that

lim
t→∞

xt+1 = x∗ = B lim
t→∞

xt + C = Bx∗ + C.

Thus, x∗ is the solution of the original equation.

Sufficient: we know that x∗ satisfies x∗ = Bx∗ + C, then

xt+1 − x∗ = B(xt − x∗) = B2(xt−1 − x∗) = · · · = Bt(x0 − x∗).

Thus, when ρ(B) < 1, then
‖xt+1 − x∗‖
‖xt − x∗‖

≤ ρ(B) < 1,

this indicates the linear convergence property. In addition,

‖xt+1 − x∗‖2 = ‖Bt(x0 − x∗)‖2 ≤ ‖B‖t2‖x0 − x∗‖2 = ρt(B)‖x0 − x∗‖2 := O(t, Q)→ 0.

2 Part 2: Quick Review of Linear Algebra

In this section, we will give a brief and quick review of the linear algebra that will be used in this course.

2.1 Row and Column Picture

Let us consider a set of Simultaneous Equations.

2x− y = 0,

2y − x = 3,

which is equivalent to [
2 −1
−1 2

] [
x
y

]
= 0.

The solution of these equations are the intersection point of lines y = 2x and y = 1
2x+ 3. The lines y = 2x

and y = 1
2x+ 3 are called row pictures of the equations. Draw them by yourself.
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These equations could be reformulated as[
2
−1

]
x+

[
−1
2

]
y =

[
0
3

]
.

Actually,

[
2
−1

]
x+

[
−1
2

]
y is the linear combination of the vectors

[
2
−1

]
and

[
−1
2

]
. Then, the column picture

of these equations are A = {z : z =

[
2
−1

]
x+

[
−1
2

]
y;x, y ∈ R}.

Q: what is A?

We similarly consider the three dimensional case and discuss the solution of the simultaneous equations.

Figure 1: 3D Case

From the row pictures (see Figure 1), Figure 1(a) has infinity solutions; Figure 1(b) has an unique solution;
Figure 1(c) and (c’) has no solutions.

Let us consider the column picture. The equations Ax = b have solutions for any b if and only if the linear
combination of column vectors of A can cover the 3-dimensional space R3.

2.2 Matrix Multiplication

Let A ∈ Rm×n and B ∈ Rn×p, then C = AB ∈ Rm×p.

• Standard Form: cij =
∑n

k=1 aikbkj , i = 1, . . . ,m, j = 1, . . . , p.

• Column Operation: Let A = (a1,a2, . . . ,an), B = (b1,b2, . . . ,bp), where ai ∈ Rm and bj ∈ Rn are
the column vector of A and B respectively. Then

Abj = b1j


a11
a21
...

am1

+ b2j


a12
a22
...

am2

+ · · ·+ bnj


a1n
a2n

...
amn

 ,
that is

Abj =

n∑
i=1

bijai.

Thus,

AB = (Ab1, Ab2, . . . , Abp).
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• Row Operation: Let A = (ã1, ã2, . . . , ãm)> =


ã>1
ã>2
...
ã>m

, where ãi = (a11, a12, . . . , a1m)> is the ith row

vector of A. Then

AB =


ã>1
ã>2
...
ã>m

B =


ã>1 B
ã>2 B

...
ã>mB

 .
• Out Product:

AB =

n∑
i=1

aib̃
>
i , (6)

where ai is the ith column of A, b̃i is the ith row of B and aib̃
>
i ∈ Rm×p, i = 1, . . . , n are rank-1

matrices.

• Block Multiplication: [
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
C11 C12

C21 C22

]
,

where C11 = A11B11 + A12B21, A11 ∈ Rm1×n1 , B11 ∈ Rn1×p1 , A12 ∈ Rm1×n2 , B21 ∈ Rn2×p1 . Thus,
C11 ∈ Rm1×p1 ,m1 +m2 = m,n1 + n2 = n, p1 + p2 = p.
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