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Optimization needs Iterative Algorithms. Why???? Let us recall the normal2 equation, and the solution
x* = (AT A)"1ATb. Generally, the computational complexity of (AT A)~! € R™ is O(n?®). why??7???

The iterative algorithm usually has the following general form in Algorithm 1.

Algorithm 1 General Form of Iterative Algorithm

=W N

5:
6:

: Input: Something you need
: Initialization: a starting point xo, and step index ¢t =0
: while a stop condition false do

xt+1 := Iterative Algorithm(x;),

and
t:=t+ 1.

end while
Output: The sequence {x;}i—o.

Then we hope that lim x; = x*.
t—o0

Example 1 (Solving the Normal Equation)

Denote that A = ATA and b = A"b, then normal equation becomes that Ax = b. How to compute it
efficiently?

e Jacobi Iterative Algorithm: Let A=B+D, where D = diag(A) and B = A — D. Then the normal
equation is (D + B)x = b. Thus, Dx = —Bx + b. Finally,

x=-D"'Bx+ D 'b. (1)
Based on Eq.(1), Jacobi iterative algorithm is designed via
Xt41 = *DilBXt —+ Dilf), (2)

and the scalar form is

3 ; i
bi — D i1 i Tt i

(273

Tt41,0 =

)

where we suppose that a;; #0 for alli=1,...,n.

Insights: If lim x; = x*, then lim X441 = —D~'B lim x; + D~'b. Thus, x* = —D~'Bx* + D~ 'b.
t—o00 t—o0 t—o0

This indicates xX* satisfies the normal equation.

e Gauss-Seidel Algorithm: Let A= L+ U + D, where D = diag(fl), L is the Lower triangular matriz of

A and U is the upper triangular matriz of A. Then the normal equation is (D + L+ U)x = b. Thus,
Dx =—Lx —Ux+b. Finally,

x=-D"'Lx - D 'Ux+ D 'b. (3)
Based on Eq.(3), Gauss-seidel iterative algorithm is designed via

Xi41 = —D 7 'Lxyy 1 — D7'Ux; + D7 'b, (4)



and the scalar form is
N i—1 ~ n ~
bi = 51 QijTey1g = 2j_iy Qi

Tt+41,6 = = )
Qi
where we suppose that a;; #0 for alli=1,...,n.
Insights: If lim x; = x*, then lim x;y1 = —D7 'L lim Xep1 — DU lim x; + D~ b. Thus, x* =
t—00 t—00 t—00 t—00

—D 'Lx* — D~'Ux* + D~ 'b. This indicates x* satisfies the normal equation.

The procedure of obtaining the iterative solution can be seen as an algorithm for solving the
linear least squares problem.

Remark 1 Algorithms in optimization can be commonly summarized as three types, but it’s not limited to
these.

e Closed Form Solution.
o [terative Algorithm, see Algorithm 1.

e Heuristic Algorithms (e.g., genetic algorithm), which will not be covered by the course.

1 Related Theory in Optimization

“Nothing is more practical than a good theory.”— by V. Vapnik [Vapnik, 1998].
What kind of theory we have to learn in Optimization?
e Theory can support you to construct models. You have see them in many examples (e.g., MLE).

e Theory can help you develop algorithms. For example, convex analysis, KTT conditions, duality theory,
optimally conditions, and among others.

e Theory can implicitly show the convergence property of the optimization algorithms. Convergence
theory is to show that under what conditions the sequences {x;}72; and {f(x;)}2, satisfy

Jim xe =x" and Jlim flxe) = f* = f<7).
Convergence Rate:

e linear convergence:

ey — x|
[
where a € (0,1).
e Super-linear convergence:
lim Xert =X

t=oe|[xp — x*||

e sub-linear convergence:

. x40 — x|
m —— 7 =
t—oo [|xp — x*|



e Others theoretical bounds:

[x: —x*[| < O(t, Q),

and
1f(xe) = f*[] < O(t, Q),

where @ includes some constants related to the original optimization problem.

We justify the convergence theory of Jacobi and Gauss-Seidel algorithms for demonstrating an concrete
example.

Theorem 1 Suppose that we have the linear equation with form x = Bx + C, then we can develop an
iterative algorithm
Xt+1 = BXt + C. (5)

For any initial point Xg, the generated sequence {x:}:2, converges at x* if and only if p(B) = ||B|2 =
Omax(B) < 1, where omax(B) is the biggest singular value of B and p(B) is so-called spectral radius of B.

Proof 1 Necessary: If tlglgo x; = a*, then according to the iterative procedure (5), we have that
tli)I&Xt_A'_l =x" :Btl'ggoxtJrC':Bx* + C.
Thus, x* is the solution of the original equation.
Sufficient: we know that x* satisfies x* = Bx* + C, then
X1 — X* = B(xy — x*) = B%(x_1 — x*) = --- = Bl(x¢ — x*).

Thus, when p(B) < 1, then
[xe1 — %"
[[x¢ —x*|

<p(B) <1,
this indicates the linear convergence property. In addition,

xe1 = x"[|l2 = [ B*(x0 — x")|l2 < | BIl3]|x0 — x"[|2 = p*(B)]|x0 — x"[|2 := O(t, Q) — 0.
2 Part 2: Quick Review of Linear Algebra
In this section, we will give a brief and quick review of the linear algebra that will be used in this course.

2.1 Row and Column Picture

Let us consider a set of Simultaneous Fquations.

20 —y =0,
2y —x =3,
which is equivalent to
RESIHEL
The solution of these equations are the intersection point of lines y = 2z and y = %x + 3. The lines y = 2z

and y = %z + 3 are called row pictures of the equations. Draw them by yourself.



These equations could be reformulated as

Actually, {_21] T+ { 9 } 1 is the linear combination of the vectors {_21] and {_21} . Then, the column picture

of these equations are A = {z:z = {_21] T+ [ 9 } y;x,y € R}.

Q: what is A?

We similarly consider the three dimensional case and discuss the solution of the simultaneous equations.

Three planes intersecting Three planes intersecting Three planes with no Three planes with no

in a line in a point intersection intersection
(a) (b) (c) (c")

Figure 1: 3D Case

From the row pictures (see Figure 1), Figure 1(a) has infinity solutions; Figure 1(b) has an unique solution;
Figure 1(c¢) and (c’) has no solutions.

Let us consider the column picture. The equations Ax = b have solutions for any b if and only if the linear
combination of column vectors of A can cover the 3-dimensional space R3.

2.2 Matrix Multiplication
Let A € R™*™ and B € R"*P then C = AB € R™*P.

e Standard Form: ¢;; =Y ;_, aigbrs,i=1,...,m,j=1,...,p.

e Column Operation: Let A = (aj,a,...,a,), B = (bi,ba,...,b,), where a; € R™ and b; € R" are
the column vector of A and B respectively. Then

a1 a12 A1n
az1 a22 a2n
Abj=by; | . | +by | o |t bag | L |
Am1 Am2 Amn
that is
n
Abj = Z bijai.
i=1
Thus,

AB = (Aby, Ab,, ..., Ab,).



ay
ag
e Row Operation: Let A = (@y,az,...,am) = | . |, where @; = (a11,a12,...,a1,,) " is the ith row
iy,
vector of A. Then
a; a; B
~T ~T
Gg ay B
AB=| . | B= .
a, a, B
e Out Product:
n
AB =Y aib/, (6)
i=1
where a; is the ith column of A, b; is the ith row of B and aiEiT € R™*P 4 = 1,...,n are rank-1

matrices.

e Block Multiplication:

|

All
A21

Aiz| |Bi1 B _|Cun Ci
Agz| |Ba1 DBao Ca1 Ca2|’

where C11 = A11B11 + A19B21, Ajp € R™>™ By € RMXP1 Ay € R™M X" By € R™*P1. Thus,
Ci11 € R™M*P1 my +mg =m,ny +ne =n,p1 + pa = p.
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